Captain Nemo: A Metasearch Engine with Personalized Hierarchical Search Space

Stefanos Souldatos, Theodore Dalamagas and Timos Sellis
School of Electrical and Computer Engineering,
National Technical University of Athens, 157 73, Athens, GR
E-mail: {stef, dalmag, timos}@dblab.ntua.gr
http://www.dblab.ntua.gr/~{stef, dalmag, timos}

Keywords: web search, personalization, metasearch engine, classification, hierarchy

Received: November 18, 2005

Personalization of search has gained a lot of publicity the last years. Personalization features in search and metasearch engines are a follow-up to the research done. On the other hand, text categorization methods have been successfully applied to document collections. Specifically, text categorization methods can support the task of classifying Web content in thematic hierarchies. Combining these two research fields, we have developed Captain Nemo, a fully-functional metasearch engine with personalized hierarchical search spaces. Captain Nemo retrieves and presents search results according to personalized retrieval models and presentation styles. Here, we present the hierarchical Web page classification approach newly adopted. Captain Nemo lets users define a hierarchy of topics of interest. Search results are automatically classified into the hierarchy, exploiting hierarchical k-Nearest Neighbor classification techniques. The user study conducted demonstrates the effectiveness of our metasearch engine.

Povzetek: Opisan je metaiskalnik Captain Nemo.

1 Introduction

Searching for Web content can be extremely hard. Web content can be found in a variety of information sources. The number of these sources keeps increasing, while at the same time sources continually enrich their content. Not only should users identify these sources, but they should also determine those containing the most relevant information to satisfy their information need.

Search and metasearch engines are tools that help the user identify such relevant information. Search engines retrieve Web pages that contain information relevant to a specific subject described with a set of keywords given by the user. Metasearch engines work at a higher level. They retrieve Web pages relevant to a set of keywords, exploiting other already existing search engines.

Personalization on the Web is an issue that has gained a lot of interest lately. Web sites have already started providing services such as preferences for the interface, the layout and the functionality of the applications. Personalization services have also been introduced in Web search and metasearch engines. However, those services deal mostly with the presentation style and ignore issues like the retrieval model, the ranking algorithm and topic preferences.

On the other hand, text classification methods, including k-Nearest Neighbor (k-NN) [30, 18], Support Vector Machines (SVM) [15, 8], Naïve Bayes (NB) [20, 2], Neural Networks [21], decision trees and regression models, have been successfully applied to document collections (see [31] for a full examination of text classification methods).

Such methods can support the task of classifying Web content in thematic hierarchies. Organizing Web content in thematic categories can be useful in Web search, since it helps users easily identify relevant information while navigating in their personal search space.

There are two main approaches for classifying documents in thematic hierarchies:

- **Flat Model** (Flatten the hierarchy): Every topic of the hierarchy corresponds to a separate category having its own training data. A classifier, based on text categorization techniques determines the right category for a new incoming Web document.

- **Hierarchical Model** (Exploit the hierarchy): A hierarchy of classifiers is built such that every classifier decides each time to classify a document in the appropriate category among the categories of the same level in the hierarchy, following a path from the root down to the leaves of the hierarchy tree. For example, an incoming document might be added to Arts category (between Arts, Science and Sports), then to Dance category inside Arts (between Poetry, Photography and Painting), then to Spanish_Dances inside Arts/Dance. The assignment scores for all these decisions can determine the final category for the incoming document.

Combining these two research fields, namely personalization of search and Web content hierarchical classification, we have created Captain Nemo, a fully-functional
metasearch engine with personalized hierarchical search spaces. Captain Nemo, initially presented in [26], retrieves and presents search results according to personalized retrieval models and presentation styles. In this paper, we present the hierarchical Web page classification approach, recently adopted in Captain Nemo. Users define a hierarchy of topics of interest. Search results are automatically classified into the hierarchy, exploiting Nearest-Neighbour classification techniques.

Our classification approach is a hybrid one. Every topic of the hierarchy is considered to be a separate category having its own training data, as in the flat model. However, the training data set of a topic is enriched by data from its subtopics. As a result, the decision of whether a Web page belongs to a category strongly depends on its descendants.

A typical application scenario for Captain Nemo starts with a set of keywords given by the user. Captain Nemo exploits several popular Web search engines to retrieve Web pages relevant to those keywords. The resulting pages are presented according to the user-defined presentation style and retrieval model. We note that users can maintain more than one different sets of preferences, which result to different presentation styles and retrieval models. For every retrieved Web page, Captain Nemo recommends the most relevant topic of user’s personal interest. Users can optionally save the retrieved pages to certain folders that correspond to topics of interest for future use.

Contribution. The main contributions of our work are:

(a) We expand personalization techniques for metasearch engines, initially presented in [26].

(b) We suggest semi-automatic hierarchical classification techniques in order to recommend relevant topics of interest to classify the retrieved Web pages. The thematic hierarchy is user-defined.

(c) We present a fully-functional metasearch engine, called Captain Nemo\(^1\), that implements the above framework.

(d) We carry out a user study to evaluate the hierarchical classification process and its effect on searching. The experiments demonstrate the effectiveness of our approach.

Related Work. The need for Web information personalization has been discussed in [25] and [24]. Following this, several Web search and metasearch engines\(^2\) offer primitive personalization services.

Concerning the topics of interest, topic-based search will be necessary for the next generation of information retrieval tools [4]. Inquirus\(^2\) [11] uses a classifier to recognize Web pages of a specific category. Northern Light\(^1\) has an approach called custom folders that organizes search results into categories. However, these categories are created dynamically by the search results and do not reflect the users’ personal interest. A similar approach is presented in [6], but the thematic hierarchy is the same for all users.

Recently, many researchers have looked into the problem of classifying Web content into thematic hierarchies, using either the flat or the hierarchical model. The former approach has shown poor results, since flat classifiers cannot cope with large amounts of information including many classes and content descriptors. In [17], an n-gram classifier was used to classify Web pages in Yahoo categories. Probabilistic methods to automatically categorize Web documents are presented in [12, 10], while statistical models for hypertext categorization are presented in [5]. The hierarchical approach has been explored initially in [16]. Experiments with bayesian classification models showed the superiority of the hierarchical model over the flat. Experiments on two-level classification using SVMs were conducted in [7], while a kernel-based algorithm for hierarchical text classification was presented in [23]. Finally, [28] exploits the structure of the hierarchy, by grouping the topics into meta-topics.

Outline. The rest of this paper is organized as follows. The personalization features of Captain Nemo are discussed in Section 2. The architecture of Captain Nemo and several implementation issues are discussed in Section 3. A user study is presented in Section 4. Section 6 concludes the paper.

2 Personal Search Spaces

Personal search spaces are maintained for users of Captain Nemo. Each personal search space includes user preferences able to support the available personalization features. In fact, more than one sets of preferences can be maintained for each user, which result to different retrieval models and presentation styles. A personal search space is implemented through three respective personalization filters.

We next discuss the available personalization features regarding the retrieval model, the presentation style and the topics of interest. The hierarchical Web page classification approach is presented in the following section.

2.1 Personal Retrieval Model

As seen before, most of the existing metasearch engines employ a standard retrieval model. In Captain Nemo, this restriction is eliminated and users can create their personal retrieval model, by setting certain parameters in the system. Default values of the parameters are preset for users that do not want to spend time on this. These parameters are described below:

Participating Search Engines. Users can declare the search engines they trust, so that only these search engines are used by the metasearch engine.

\(^1\)http://www.dblab.ntua.gr/~stef/nemo/

\(^2\)Google, AlltheWeb, Yahoo, AltaVista, WebCrawler, MetaCrawler, Dogpile, etc.
Search Engine Weights. In a metasearch engine, retrieved Web pages may be ranked according to their ranking in every individual search engine that is exploited. In Captain Nemo, as shown in Section 3.1, the search engines can participate in the ranking algorithm with different weights. These weights are set by the user. A lower weight for a search engine indicates low reliability and importance for that particular engine. The results retrieved by this search engine will appear lower in the output of Captain Nemo.

Number of Results. A recent research [14] has shown that the majority of search engine users (81.7%) rarely read beyond the third page of search results. Users can define the number of retrieved Web pages per search engine.

Search Engine Timeout. Delays in the retrieval task of a search engine can dramatically deteriorate the response time of any metasearch engine that exploits the particular search engine. In Captain Nemo, users can set a timeout option, i.e. time to wait for Web pages to be retrieved for each search engine. Results from delaying search engines are ignored.

2.2 Personal Presentation Style

Captain Nemo results are presented through a customizable interface, called personal presentation style. Again, default values of the parameters are preset for users that do not want to spend time on this. The following options exist:

Grouping. In a typical metasearch engine, results returned by search engines are merged, ranked and presented in a list. Beside this typical presentation style, Captain Nemo can group the retrieved Web pages (a) by search engine or (b) by topic of interest. The latter is based on a hierarchical classification technique, described in Section 3.2. An example of search results grouped by topic of interest is shown in Figure 1.

Content. The results retrieved by Captain Nemo include three parts, title, description and URL. Users can declare which of these parts should be displayed. The available options are (a) title, description and URL, (b) title and URL and (c) title.

Look and Feel. Users can customize the general look and feel of Captain Nemo. Selecting among the available color themes and page layouts, they can define preferable ways of presenting results. There are six color themes and three page layouts.

2.3 Topics of Personal Interest

Captain Nemo users can define topics of personal interest, i.e. thematic categories where search results can be kept for future reference. The retrieved Web pages can be saved in folders that correspond to these topics. These folders have a role similar to Favorites or Bookmarks in Web browsers.

For every retrieved Web page, Captain Nemo recommends the most relevant topic of personal interest. Users can optionally save the retrieved pages to the recommended or other folder for future use.

The topics of personal interest are organized in a hierarchy. The hierarchy can be thought of as a tree structure having a root and a set of nodes which refer to topics of the thematic hierarchy. For every topic node, there is (a) a label that describes its concept and (b) a stricter description of the concept (a set of keywords).

Figure 2 shows such a hierarchy of topics of personal interest. The hierarchical classification technique is discussed in more detail in Section 3.2.

3 System Implementation

This section presents the architecture of our application and discusses various interesting implementation issues. Figure
3 illustrates the main modules of Captain Nemo.

![System Architecture Diagram](image)

Search Module. It implements the main functionality of the metasearch engine, providing connection to the search engines selected by the user. It retrieves the relevant Web pages according to the retrieval model defined by the user. The results are sent to the ranking module for further processing. The module is implemented in Perl, using the search engine wrappers `WWW::Search`\(^4\), parameterized by user preferences.

Ranking Module. The retrieved Web pages are ranked and grouped according to the personal retrieval model of the user. For every retrieved Web page, a corresponding topic of personal interest is determined. The ranking process, implemented in Perl, is discussed in further detail in Section 3.1.

Presentation Module. It presents the search results provided by the ranking module. It is implemented in Perl CGI generating XML output. The latter is passed through the appropriate XSL filter representing the look and feel settings of the specific user.

Preference Manager. It provides the connection between the three aforementioned modules (i.e. search module, ranking module, presentation module) and the information stored in user profiles. It is also responsible for updating user profiles and the corresponding XSL files. It is implemented in Perl on top of the PostgreSQL database system\(^5\).

Hierarchical Classifier. It implements the hierarchical classification of results to the thematic hierarchy of the user, as described in Section 3.2. It is implemented in Perl.

Category Manager. It manages the topics of interests and keeps the appropriate folders on disk in accordance with the user profiles. It provides all the necessary information to the hierarchical classifier. It cooperates with the presentation module, when grouping by topics of interest is selected by the user. Thematic hierarchies are represented by XML indexes, which are parsed by Perl.

The next sections discuss in detail the ranking and classification mechanisms used in our application.

3.1 Ranking

Given a query, a typical metasearch engine sends it to several search engines, ranks the retrieved Web pages and merges them in a single list. After the merge, the most relevant retrieved pages should be on top. There are two approaches used to implement such a ranking task. The first one assumes that the initial scores assigned to the retrieved pages by each one of the search engines are known. The other one does not presupposes any information about these scores.

In [22], it is pointed out that the scale used in the similarity measure in several search engines may be different. Therefore, normalization is required to achieve a common measure of comparison. Moreover, the reliability of each search engine must be incorporated in the ranking algorithm through a weight factor. This factor is calculated separately during each search. Search engines that return more Web pages should receive higher weight. This is due of the perception that the number of relevant Web pages retrieved is proportional to the total number of Web pages retrieved as relevant for all search engines exploited by the metasearch engine.

On the other hand, [9, 13, 27] stress that the scores of various search engines are not compatible and comparable even when normalized. For example, [27] notes that the same document receives different scores in various search engines and [9] concludes that the score depends on the document collection used by a search engine. In addition, [13] points out that the comparison is not feasible not even among engines using the same ranking algorithm and claims that search engines should provide statistical elements together with the results.

In [1], ranking algorithms are proposed which completely ignore the scores assigned by the search engines to the retrieved Web pages: bayes-fuse uses probabilistic theory to calculate the probability of a result to be relevant to the query, while borda-fuse is based on democratic voting. The latter considers that each search engine gives votes in the results it returns, giving \(N\) votes in the first result, \(N - 1\) in the second, etc. The metasearch engine gathers the votes for the retrieved Web pages from all search engines and the ranking is determined democratically by summing up the votes.

Weighted Borda-Fuse. The algorithm adopted by Captain Nemo is the weighted alternative of Borda-fuse. In this case, the scores assigned by the search engines are weighted by the number of votes given by the engines.
algorithm, search engines are not treated equally, but their votes are considered with weights depending on the reliability of each search engine. These weights are set by the users in their profiles. Thus, the votes that the i result of the j search engine receives are:

$$V(r_{ij}) = w_j \times (\max_k(r_k) - i + 1)$$

where w_j is the weight of the j search engine and r_k is the number of results rendered by search engine k. Retrieved pages that appear in more than one search engines receive the sum of their votes.

Example. A user has defined the personal retrieval model of Table 1.

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>Results</th>
<th>Weight</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE1</td>
<td>20</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>SE2</td>
<td>30</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>SE3</td>
<td>10</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1: Personal retrieval model.

The user runs a query and gets 4, 3 and 5 results respectively from the three search engines specified. According to Weighted Borda-Fuse, the search engines have given votes to the results. The first result of each search engine receives 5 votes, as the largest number of results returned is 5. Table 2 shows the votes received by the search engines.

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>SE2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SE3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Result votes by search engines.

Captain Nemo multiplies these votes by the weight of each search engine to push upward results of search engines trusted most by user. The final votes of each result of each search engine is shown in Table 3.

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE1</td>
<td>35</td>
<td>28</td>
<td>21</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>SE2</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SE3</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3: Result votes by *Captain Nemo*.

So, the first result to appear in the rank is the first result of search engine SE2.

3.2 Hierarchical Classification of Retrieved Web Pages

As we have already mentioned, *Captain Nemo* recommends relevant topics of interest to classify the retrieved pages, exploiting k-Nearest Neighbor classification techniques. Other classification algorithms can be easily adopted as well. However, our efforts were focused on providing the appropriate framework and not on testing various classification algorithms, which has been widely addressed by many researchers (see Related Work in Section 1). Thus, we selected the simple yet effective [31] k-Nearest Neighbor classification technique.

Retrieved Web pages are processed by k-NN and classified in the thematic hierarchy. The part of a Web page that is used for classification includes its title and the part of its content extracted by search engines. The latter is usually strongly relevant to the imposed query. The whole content of Web pages could be used for higher accuracy, but this would deteriorate the response time [7].

k-NN Classification. The k-NN classification method presumes that a group of categories is defined for a data set and a set of training documents corresponds to each category. Given an incoming document, the method ranks all training documents according to the similarity value between those documents and the incoming document. Then, the method uses the categories of the k top-ranked documents to decide the right category for the incoming document by adding the per-neighbour similarity values for each one of those categories [30, 31]:

$$y(x, c_j) = \sum_{d_i \in kNN} \text{sim}(x, d_i) \times y(d_i, c_j)$$

where:

1. x is an incoming document, d_i is a training document, c_j is a category.
2. $y(d_i, c_j) = 1$ if d_i belongs to c_j or 0 otherwise,
3. $\text{sim}(x, d_i)$ is the similarity value between the incoming document x and the training document d_i.

Using thresholds on these scores, k-NN obtains binary category assignments and allows the system to assign a document to more than one categories. Instead it can just use the category with the highest score as the right one for the incoming document. *Captain Nemo* follows the second approach.

Hierarchical k-NN Classification. Hierarchical k-NN classification algorithms are usually implemented in a top-down approach. The document under consideration is first classified to one of the first-level categories. Recursively, the classification continues in the subtree rooted to the category selected in the previous step. The process stops when the selected category is either a leaf or more similar to the document than its subcategories. In this approach, all categories in the hierarchy should be defined in detail to attract documents that belong to one of their subcategories. To avoid this difficulty, in *Captain Nemo*, where the descriptions of the categories are given by users, a hybrid approach is employed.
Our Hybrid Approach. Our classification approach is a hybrid one. The topics of interest are organized in a thematic hierarchy. Every topic of the hierarchy is considered to be a separate category having its own training data (its keyword description), as in the flat model. However, the training data set of a topic is enriched by data from its subtopics. For example, the categories of the hierarchy of Figure 2 are enriched as shown in Figure 4. As a result, the decision of whether a Web page belongs to a category strongly depends on its descendants.

\[
\text{Sim}(R, D) = \frac{\sum_{t \in R \cap D} w_{R,t} \times w_{D,t}}{\sqrt{\sum_{t \in R \cap D} w_{R,t}^2 \times \sum_{t \in R \cap D} w_{D,t}^2}}
\]

(3)

where \(t \) is a term, \(w_{R,t} \) and \(w_{D,t} \) are the weights of term \(t \) in \(R \) and \(D \) respectively. These weights are:

\[
w_{R,t} = \log \left(1 + \frac{C_t}{C} \right)
\]

(4)

\[
w_{D,t} = 1 + \log f_{D,t}
\]

(5)

where \(C \) is the total number of topics of interest, \(C_t \) is the number of topics of interest including term \(t \) in their description and \(f_{D,t} \) is the frequency of occurrence of \(t \) in description \(D \).

Having a new, retrieved Web page, we rank the topics of interest according to their similarity with the page (the topic of interest with the highest similarity will be on the top). Then, the top-ranked topic of interest is selected as the most appropriate for the retrieved page.

Example. We have created a user with the hierarchy of topics of personal interest presented in Figure 2. For this user, we have run the query “michael jordan”, asking for just a few results. A screenshot of the results grouped by topic of interest is shown in Figure 1. Totally, there are:

- 0 results in category 1. ART,
- 3 results in category 1.1. CINEMA,
- 2 results in category 1.2. PAINTING,
- 3 results in category 2. SPORTS,
- 8 results in category 2.1. BASKETBALL,
- 0 results in category 2.2. FOOTBALL.

As expected, the majority of results are matched to topic BASKETBALL. However, there are results matching to other topics as well. Results matching to topic CINEMA deal with Michael Jordan as an actor. Results in topic PAINTING refer to photo galleries with photos of Michael Jordan. Finally, results matching to topic SPORTS refer to the athletic background of Michael Jordan in general.

4 User Study

A user study was conducted to evaluate the hierarchical classification process and its effect on searching. Twelve persons of various backgrounds participated in the experiments. We divided users into two teams, users and testers.

Experiment 1. The first experiment evaluated the performance of the hierarchical classification process. The six users were assigned the task to create a hierarchy of four to six topics of personal interest in Captain Nemo. However, the users were advised to restrict in one domain, so that we can test classification among similar categories, e.g. apples vs oranges. Testing among totally different categories, for example oranges vs shoes, would be easy; hence it was avoided. The user hierarchies are shown in Table 4.

After the six hierarchies (category names and descriptions) were defined in the system, we asked the users to recognize categories of the Dmoz directory\(^{6}\) that correspond to their thematic categories. Then, we fed the Dmoz pages into the Hierarchical Classifier and counted the percentage of pages that were classified correctly in the appropriate category. These percentages are shown in Table 4. For instance, 75% of the pages found under the Dmoz category corresponding to category audio were classified to category audio as well. The average percentage of pages correctly classified for each user is noted next to the user label.

On average, 73% of pages found in the Dmoz hierarchy are classified in the correct category by the Hierarchical Classifier of Captain Nemo. The reader should keep in mind that the categories created by users in this experiment

\(^{6}\)http://www.dmoz.org/
Experiment 2. The second experiment was conducted to evaluate the effect of presenting the results classified in user-defined categories. We measured the time users need to identify Web pages relevant to their information need (in the spirit of [6]). We conducted the experiments with users that created the hierarchy themselves, and testers who were not previously aware of the user-defined categories.

Each user was given the results of a query in the domain of the self-defined hierarchy and was asked to identify Web pages for a query more detailed than the given one (called target query), as in [6]. For example, user3 was given the results of query ‘brian’ and was asked to identify a Web page regarding the famous bassist Brian Bromberg. The time the user spent using the classified-by-category interface and the classified-in-a-list interface is shown in Table 5. Next, each tester was asked to do exactly the same using the user-defined hierarchy of their corresponding user (see Table 5). For users that have defined their own thematic hierarchy, searching was more than 60% faster than searching of testers that have not defined the categories themselves.

5 Conclusion

Getting this idea from two research fields, namely personalization of search and Web content classification, we have created Captain Nemo, a fully-functional metasearch engine with personalized hierarchical search spaces. Captain Nemo, initially presented in [26], retrieves and presents search results according to personalized retrieval models and presentation styles. In this paper, we presented the hierarchical Web page classification approach, recently adopted in Captain Nemo. Users define a hierarchy of topics of interest. Search results are automatically classified into the hierarchy, exploiting k-Nearest Neighbor classification techniques.

For future work, we are going to improve the hierarchical classification process, exploiting background knowledge in the form of ontologies [3]. Next, we will incorporate a Word Sense Disambiguation (WSD) technique in the spirit of [19].

Table 4: User-defined thematic hierarchies and percentage of correctly classified query results.

<table>
<thead>
<tr>
<th>User 1 (avg: 64%)</th>
<th>User 2 (avg: 67%)</th>
<th>User 3 (avg: 73%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>electronics (55%)</td>
<td>databases (67%)</td>
<td>jazz musicians (75%)</td>
</tr>
<tr>
<td>⊢ audio (75%)</td>
<td>⊢ data mining (94%)</td>
<td>⊢ bassists (92%)</td>
</tr>
<tr>
<td>⊢ photography (43%)</td>
<td>⊢ warehousing (62%)</td>
<td>⊢ trumpeters (50%)</td>
</tr>
<tr>
<td>⊢ digital camera (83%)</td>
<td>⊢ olap (44%)</td>
<td>⊢ trombonists (76%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User 4 (avg: 80%)</th>
<th>User 5 (avg: 81%)</th>
<th>User 6 (avg: 70%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cooking (61%)</td>
<td>furniture (49%)</td>
<td>music festivals (82%)</td>
</tr>
<tr>
<td>⊢ potatoes (67%)</td>
<td>⊢ leather (93%)</td>
<td>⊢ electronic (56%)</td>
</tr>
<tr>
<td>⊢ onions (100%)</td>
<td>⊢ bamboo (100%)</td>
<td>⊢ trombonists (76%)</td>
</tr>
<tr>
<td>⊢ pizza (93%)</td>
<td>⊢ bedroom (81%)</td>
<td>⊢ dance (83%)</td>
</tr>
</tbody>
</table>

were forced to belong in the same domain. In real cases, users define categories of various domains, making categories more distinguishable and classification percentages even higher.

References

Table 5: Time to identify relevant Web pages for given queries.

<table>
<thead>
<tr>
<th>USERS</th>
<th>QUERY</th>
<th>BY CATEGORY</th>
<th>IN A LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>Tester 1</td>
<td>car</td>
<td>car audio system</td>
</tr>
<tr>
<td>User 2</td>
<td>Tester 2</td>
<td>select</td>
<td>SQL tutorial</td>
</tr>
<tr>
<td>User 3</td>
<td>Tester 3</td>
<td>brian</td>
<td>bassist Brian Bromberg</td>
</tr>
<tr>
<td>User 4</td>
<td>Tester 4</td>
<td>italian</td>
<td>Italian pizza recipe</td>
</tr>
<tr>
<td>User 5</td>
<td>Tester 5</td>
<td>outdoor</td>
<td>outdoor furniture</td>
</tr>
<tr>
<td>User 6</td>
<td>Tester 6</td>
<td>rainbow</td>
<td>Rainbow band</td>
</tr>
</tbody>
</table>

