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ABSTRACT

This paper presents a proposal for a Data Warehouse

Conceptual Data Model which allows for the description

of both the relevant aggregated entities of the domain|

together with their properties and their relationships

with other relevant entities|and the relevant dimen-

sions involved in building the aggregated entities. The

proposed Data Warehouse Conceptual Data Model is

able to capture the database schemata expressed in the

most interesting traditional Semantic Data Models and

Object-Oriented Data Models; it is able to introduce

complex descriptions of the structure of aggregated enti-

ties and multiply hierarchically organised dimensions; it

is based on Description Logics, a class of formalisms for

which it is possible to study the expressivity in relation

with decidability of reasoning problems and completeness

of algorithms; it supports the most important reasoning

services for the basic Data Warehouse operations.

1 Introduction

Data Warehouse|and especially OLAP|applications
ask for the vital extension of the expressive
power and functionality of traditional concep-
tual modeling formalisms in order to cope with
aggregation. Still, there have been few at-
tempts [Agrawal et al., 1995, Gray et al., 1996,
Gyssens and Lakshmanan, 1997, Catarci et al., 1995]
to provide such an extended modeling formalism,
despite the fact that (1) experiences in the �eld of
databases have proved that conceptual modeling is
crucial for the design, evolution, and optimisation
of a database, (2) a great variety of data warehouse
system are on the market, most of them providing
some implementation of multidimensional aggregation,
and (3) query optimisation is even more crucial for
data warehouses than it is for databases|which makes
semantic query optimisation using a conceptual model
even more important. As a consequence of the absence
of a such an extended modeling formalism, a compar-

ison of di�erent systems or language extensions for
query optimisation is di�cult: a common framework
in which to translate and compare these extensions
is missing, new query optimisation techniques devel-
oped for extended schema and/or query languages
(see [Gupta et al., 1995, Levy and Mumick, 1996,
Srivastava et al., 1996, Mumick and Shmueli, 1995]
for query optimisation with aggregation, and
[Levy et al., 1996] for planning queries to hetero-
geneous sources) cannot be compared appropriately: in
most cases, it can be easily seen that the optimisation
algorithms transform queries to equivalent queries, but
it remains open where one algorithm is better than
another one, whether it is optimal or in how far it is
incomplete.
In order to address these questions, a formal framework
must be developed that encompasses the abstract prin-
ciples of the data warehouse related extensions of tra-
ditional representation formalisms. We present in this
paper some preliminary outcome from the reserach done
within the \Foundations of Data Warehouse Quality"
(DWQ) long term research project, funded by the Eu-
ropean Commission (n. 22469) under the ESPRIT Pro-
gramme. With respect to the global picture, the role of
our research within DWQ is to study a formal framework
at the conceptual level (see Figure 1). The conceptual
data model we are investigating should be able to ab-
stract and describe the entities and relations which are
relevant both in the whole enterprise, and in the user
analysis of such information. In the following, we will
refer to this formalism as the Data Warehouse Concep-
tual Data Model.
In order to overcome the above mentioned lack of for-
malisation of semantic data warehouse problems, our
goal is to develop a novel conceptual data model which:

� has to be equipped with well-de�ned semantics,

� should be expressive enough to capture the data
models relevant in standard (relational) database
technology and in more advanced Data Warehouse
applications,
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Figure 1: The role played by the Data Warehouse Con-
ceptual Data Model with respect to the DWQ architec-
ture.

� should give a formalisation of the operators on the
data structures used in Data Warehouse applica-
tions,

� has to be able to capture inference problems rele-
vant for reasoning in Data Warehouses like query
optimisation, view reuse, update propagation, etc.

1.1 A Data Warehouse Conceptual Data
Model

A DWCDM must provide means for the representation
of a multidimensional conceptual view of data.
More precisely, a DWCDM provides the language for
de�ning multidimensional information within a concep-
tual model in the data warehouse information base. As
stated above, the model is of support for the conceptual
design of a data warehouse, for query and view manage-
ment, and for update propagation: it serves as a refer-
ence meta-model for deriving the inter-relations among
entities, relations, aggregations, and for providing the
integrity constraints necessary to reduce the design and
maintenance costs of the data warehouse. Hence a
DWCDM must be expressive enough to describe both
the abstract business domain concerned with the spe-
ci�c application (Enterprise model)|just like a concep-
tual schema in the traditional database world|and the
possible views of the enterprise information a user may
want to analyse (Client model)|with particular empha-
sis on the aggregated views, which are peculiar to a data
warehouse architecture (see Figure 1). A multidimen-
sional modeling object in the logical perspective|e.g.,
a materialised view, a query, or a cube|should always
be related with some (possibly aggregated) entity in the
conceptual schema.
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Figure 2: Sales volume as a function of product, time,
location.

In the following, we will briey introduce the ideas be-
hind a multidimensional data model and compare it
with a traditional relational data model. A more com-
prehensive introduction has been done in the forth-
coming book \Fundamentals of Data Warehousing"
[Baader et al., 1999], Chapter 4 on Multidimensional

Aggregation.
Relational database tables contain records (or rows).
Each record consists of �elds (or columns). In a normal
relational database, a number of �elds in each record
(keys) may uniquely identify each record. In contrast,
the multidimensional data model is an n-dimensional
array (sometimes called a hypercube or cube). Each di-
mension has an associated hierarchy of levels of con-
solidated data. For instance, a spatial dimension might
have a hierarchy with levels such as country, region, city,
o�ce.
Measures (which are also known as variables or
metrics)|like Sales in the example, or budget, revenue,
inventory, etc.|in a multidimensional array correspond
to columns in a relational database table whose values
functionally depend on the values of other columns. Val-
ues within a table column correspond to values for that
measure in a multidimensional array: measures asso-
ciate values with points in the multi-dimensional world.
For example, the measure of the sales of the product
Cola, in the northern region, in January, is 13,000.
Thus, a dimension acts as an index for identifying values
within a multi-dimensional array. If one member of the
dimension is selected, then the remaining dimensions in
which a range of members (or all members) are selected
de�nes a sub-cube. If all but two dimensions have a
single member selected, the remaining two dimensions
de�ne a spreadsheet (or a slice or a page). If all di-
mensions have a single member selected, then a single
cell is de�ned. Dimensions o�er a very concise, intuitive
way of organising and selecting data for retrieval, explo-
ration and analysis. Usual pre-de�ned dimension levels



(or Roll-Ups ) for aggregating data in DW are: tem-
poral (e.g., year vs. month), geographical/spatial (e.g.,
Rome vs. Italy), organisational (meaning the hierarchi-
cal breakdowns of your organisation, e.g., Institute vs.
Department), and physical (e.g., Car vs. Engine).
A value in a single cell may represent an aggregated mea-
sure computed from more speci�c data at some lower
level of the same dimension. Aggregation involves com-
puting aggregation functions { according to the attribute
hierarchy within dimensions or to cross-dimensional for-
mulas { for one or more dimensions. For example, the
value 13,000 for the sales in January, may have been
consolidated as the sum of the disaggregated values of
the weekly (or day-by-day) sales. Another example in-
troducing an aggregation grounded on a di�erent dimen-
sion is the cost of a product { e.g., a car { as being the
sum of the costs of all of its components.
In order to provide an adequate conceptualization of
multidimensional information, a Data Warehouse Con-
ceptual Data Model should provide the possibility of ex-
plicitly modeling the relevant aggregations and dimen-

sions.
According to a conservative point of view, a desirable
Data Warehouse Conceptual Data Model should ex-
tend some standard modeling formalism (such as Entity-
Relationship or OMT) to allow for the description of
both aggregated entities of the domain { together with
their properties and their relationships with the other
relevant entities { and the dimensions involved. This
document is about a proposal for a Data Warehouse
Conceptual Data Model having the following properties:

� it is able to capture the database schemata ex-
pressed in the most interesting Semantic Data Mod-
els and Object-Oriented Data Models;

� descriptions of dimensions and aggregated entities
are part of the model;

� it is based on Description Logics, a class of for-
malisms for which it is possible to study expressiv-
ity in relation to the decidability of the reasoning
problems and the completeness of algorithms;

� it supports the most important reasoning services
for the basic Data Warehouse operations.

1.2 Reasoning with a Data Warehouse
Conceptual Model

Assuming that the syntax, semantics, and operators of
the Data Warehouse Conceptual Data Model are de-
�ned according to the requirements stated above, it re-
mains to specify relevant inference problems, to inves-
tigate these problems with respect to their computa-
tional complexity, and to develop reasoning algorithms
for them. This will provide a theoretical and algorithmic
basis which can be used for the design and evolution of
a data warehouse and for semantic query optimisation.

As in traditional representation formalisms, many in-
ference problems can be reduced to satis�ability and
containment. Satis�ability of classes (or of queries, by
means of the classes they represent) is the problem
whether there exists a world such that each class of
a given set of classes has at least one instance. Con-
tainment asks whether one class is more general than
another one, that is whether each instance of the latter
class is always also an instance of the more general one.
It is well-known that solutions to these problems can
be used for optimising queries: for example, if a query
(resp. the class it represents) is not satis�able, we do
not need to process it since its result is surely empty. If a
query is contained in a materialised view, then this view
can be used to process the query instead of searching in
a larger table.
Now, data warehouse applications confront us with a
third inference problem. Aggregation is the central
means to summarise and condense the information con-
tained in the various sources. It occurs (1) when inte-
grating data from sources, (2) when building views for
the data marts, and (3) in ad-hoc queries. As queries
to the sources or to larger views are far more expensive
than those to smaller views, we are confronted with a
new problem, namely, given a query involving aggrega-
tion and a (materialised) view, can this query be com-
puted using (the aggregations contained in) this view.
This depends on whether the aggregations contained in
the view are still �ne-grained enough to compute the ag-
gregations required by the query. For example, suppose
the users asks the system to compute a query Q, namely
the total pro�t of all product groups for each year and
each region. If a (materialised) view V exists which
contains the pro�t for the product groups food and non-
food for all quarters for all regions, then the total pro�t
can be computed by simply summing up those partial
pro�ts for each year (given that we sell only food and
non-food and that nothing is both food and non-food).
Please note that the queryQ is not contained in the view
V in the classical reading of containment. Nevertheless,
V can be used to compute Q.
In the following, we will call this relationship between
a query (or a view) and a view (or a query) re�nement.
The main di�erence between the containment relation
and the re�nement relation is the following: for a view
V to be contained in another view V 0, each element of V
is also an element of V 0, and, roughly spoken, they can
be obtained simply by erasing some lines or columns
of V 0. For a view V to be more coarse-grained than
another view V 0, erasing is no longer su�cient. It might
be necessary to aggregate some elements of V 0 to build
an element of V .
The last reasoning task to be cited here is the retrieval
of all those instances in a given data base which satisfy
certain properties. Traditionally, these properties are
speci�ed using an expressive query language like SQL,
conjunctive queries, QBE, etc. This high expressiveness
is possible since, in general, to answer a query (that



is, to retrieve all instances satisfying the query) is less
complex than deciding, for example, if a given query is
satis�able. Summing up, we are confronted with four
reasoning services or problems:

� to decide whether queries (or views) are satis�able,

� whether one is contained in another,

� whether one is re�ned by another, and

� to answer a query.

The �rst three reasoning problems belong to the inten-
sional reasoning problems, whereas the last one belongs
to the extensional reasoning problems. In general, inten-
sional reasoning is more complicated than extensional
reasoning. As a consequence, given that all these prob-
lems should be decidable, one may use a more expressive
language to formulate extensional problems than the
language used to formulate intensional problems. A log-
ical approach for reasoning is surely useful not only for
integrating heterogeneous sources and optimising (ag-
gregate) queries, but also for update propagation, DW
design and DW evolution. In update propagation, the
information provided by integrity constraints (expressed
in some logic) can be used to reduce the maintenance
cost of the DW. This information along with reasoning
mechanisms for checking query containment or query
re�nement (more generally, query rewriting over views)
can be used for optimal DW design, incremental DW
design, and DW evolution.

The paper is organised as follows. After having in-
troduced the notion of DWCDM, Section 2 will pro-
pose a basic modeling language|based on Description
Logics|which is expressive enough to capture the tradi-
tional semantic data models and Object-Oriented data
models. The core part of this document (Section 3) is
the proposal of a conceptual modeling language which
emphasises the possibility to describe the explicit struc-
ture of aggregations instead of the way the values of the
measures of those aggregations are computed through
aggregation functions.

2 The basic Modeling Language

The formal language for the basic conceptual level rep-
resentation is based on Description Logics. Descrip-
tion Logics1 are formalisms designed for a logical recon-
struction of representation tools such as frames, Object-
Oriented and semantic data models, semantic networks,
KL-One-like languages [Woods and Schmolze, 1992],
type systems, and feature logics. Nowadays, descrip-
tion logics are also considered the most important uni-
fying formalism for the many object-centred represen-
tation languages used in areas other than Knowledge

1Description Logics have been also called Frame-Based De-

scription Languages, Term Subsumption Languages, Terminologi-

cal Logics, Taxonomic Logics, Concept Languages or KL-One-like
languages.

C;D ! A j A (primitive concept)
> j top (top)
? j bottom (bottom)
:C j (not C) (complement)
C uD j (and C D : : : ) (conjunction)
C tD j (or C D : : : ) (disjunction)
8R.C j (all R C) (univ. quanti�er)
9R.C j (some R C) (exist. quanti�er)
f " j (undefined f) (unde�nedness)
f : C (in f C) (selection)

R; S ! P j P (primitive role)
f j f (feature)
R
�1 j (inverse R) (inverse role)

RjC j (restrict R C) (range restriction)
R � S (compose R S : : : ) (role chain)

f; g ! p j p (primitive feature)
f � g (compose f g : : : ) (feature chain)

Figure 3: Syntax rules for the ALCFI+ Description
Logic.

Representation. In particular, [Buchheit et al., 1994,
Calvanese et al., 1994, Calvanese et al., 1995] propose a
formal mapping between description logics, Semantic
Data Models, and Object-Oriented formalisms. Impor-
tant characteristics of Description Logics are high ex-
pressivity together with decidability, which guarantee
that reasoning algorithms always terminate with the
correct answers. Unlike Object-Oriented systems, de-
scription logics do not stress the representation of the
behavioural aspect of information, for which they are
still considered inadequate.
In this section we give a brief introduction to a
basic description logic, which will serve as the
basic representation language for our DWCDM pro-
posal. With respect to the formal apparatus, we
will strictly follow the concept language formalism
introduced by [Schmidt-Schau� and Smolka, 1991]
and further elaborated, for example, by
[Donini et al., 1991a, Donini et al., 1991b,
Donini et al., 1992, Buchheit et al., 1993,
Donini et al., 1994, De Giacomo and Lenzerini, 1995,
De Giacomo and Lenzerini, 1996]: in this per-
spective, Description Logics are considered as
a structured fragment of predicate logic. ALC

[Schmidt-Schau� and Smolka, 1991] is the minimal
description language including full negation and
disjunction|i.e., propositional calculus, and it is a
notational variant of the propositional modal logic
K(m) [Schild, 1991].
The basic types of a concept language are concepts,
roles, and features. A concept is a description gath-
ering the common properties among a collection of in-
dividuals; from a logical point of view it is a unary
predicate ranging over the domain of individuals. Inter-
relationships between these individuals are represented
either by means of roles (which are interpreted as binary
relations over the domain of individuals) or by means of



>I = �I

?I = ;

(:C)I = �I n CI

(C uD)I = C
I \D

I

(C tD)I = C
I [D

I

(8R.C)I = fi 2 �I j 8j. (i; j) 2 R
I ) j 2 C

Ig

(9R.C)I = fi 2 �I j 9j. (i; j) 2 R
I ^ j 2 C

Ig

(f ")I = �I n dom f
I

(f : C)I = fi 2 dom f
I j fI(i) 2 C

Ig

(R�1)I = f(i; j) 2 �I ��I j (j; i) 2 R
Ig

(RjC)
I = R

I \ (�I � C
I)

(R � S)I = R
I
� S

I

Figure 4: The semantics of ALCFI+.

features (which are interpreted as partial functions over
the domain of individuals). Both roles and features can
be used to individuals to certain properties. In the fol-
lowing, we will consider the Description LogicALCFI+,
extending ALC with features (i.e., functional roles), in-
verse roles, role composition, and role restrictions.
According to the syntax rules of Figure 3, ALCFI+

concepts (denoted by the letters C and D) are built out
of primitive concepts (denoted by the letter A), roles
(denoted by the letter R;S), and features (denoted by
the letters f; g); roles are built out of primitive roles

(denoted by the letter P ) and features are built out of
primitive features (denoted by the letter p); it is worth
noting that features are considered as special cases of
roles.
Let us now consider the formal semantics of the
ALCFI

+. We de�ne the meaning of concepts as sets
of individuals|as for unary predicates|and the mean-
ing of roles as sets of pairs of individuals|as for bi-
nary predicates. Formally, an interpretation is a pair
I = (�I ; �I) consisting of a set �I of individuals (the
domain of I) and a function �I (the interpretation func-

tion of I) mapping every concept to a subset of �I ,
every role to a subset of �I ��I , and every feature to
a partial function from �I to �I , such that the equa-
tions in Figure 4 are satis�ed.
For example, we can consider the concept of happy
fathers, de�ned using the primitive concepts Man,

Doctor, Rich, Famous and the roles CHILD, FRIEND.
The concept happy fathers can be expressed in
ALCFI

+ as

Man u (9CHILD.>)u
8CHILD. (Doctoru 9FRIEND. (Rich t Famous));

i.e., those men having some child and all of whose chil-
dren are doctors having some friend who is rich or fa-
mous.
A knowledge base, in this context, is a �nite set � of ter-
minological axioms; it can also be called a terminology

or TBox. For a concept name A, and (possibly com-

plex) concepts C;D, terminological axioms are of the
form A

:
= C (concept de�nition), A v C (primitive con-

cept de�nition), C v D (general inclusion statement).
An interpretation I satis�es C v D if and only if the
interpretation of C is included in the interpretation of
D, i.e., CI � DI . It is clear that the last kind of axiom
is a generalization of the �rst two: concept de�nitions
of the type A

:
= C { where A is an atomic concept { can

be reduced to the pair of axioms (A v C) and (C v A).
Another class of terminological axioms { pertaining to
roles R;S { are of the form R v S. Again, an interpre-
tation I satis�es R v S if and only if the interpretation
of R { which is now a set of pairs of individuals { is
included in the interpretation of S, i.e., RI � SI . An
interpretation I is a model of a knowledge base � i� ev-
ery terminological axiom of � is satis�ed by I. If � has
a model, then it is satis�able; thus, checking for KB sat-
is�ability is deciding whether there is at least one model
for the knowledge base. � logically implies an axiom �

(written � j= �) if � is satis�ed by every model of �.
We say that a concept C is subsumed by a concept D in
a knowledge base � (written � j= C v D) if CI � DI

for every model I of �. For example, the concept

Personu (9CHILD.Person)

denoting the class of parents|i.e., the persons having
at least a child which is a person|subsumes the concept

Man u (9CHILD.>)u
8CHILD. (Doctor u 9FRIEND. (Rich t Famous))

denoting the class of happy fathers { with respect to
the following knowledge base �:

Doctor
:
= Personu 9DEGREE.Phd;

Man
:
= Personu sex : Male;

i.e., every happy father is also a person having at least
one child, given the background knowledge that men are
male persons, and that doctors are persons.
A concept C is satis�able, given a knowledge base �, if
there is at least one model I of � such that CI 6= ;, i.e.
� 6j= C � ?. For example, the concept

(9CHILD.Man) u (8CHILD. (sex : :Male))

is unsatis�able with respect to the above knowledge base
�. In fact, an individual whose children are not male
cannot have a child being a man.
Concept subsumption can be reduced to concept satis-
�ability since C is subsumed by D in � if and only if
(C u :D) is unsatis�able in �.

2.1 Expressivity of the basic Modeling Lan-
guage

The basic Description Logic introduced in the pre-
vious section was designed such that it is able to
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capture database schemata expressed in the most in-
teresting Semantic Data Models and Object-Oriented
Data Models, and by the fact that it is compatible
with the DLR Description Logic �rst introduced in
[De Giacomo and Lenzerini, 1999]. We have chosen a
limited expressivity to meet the following two goals:

� the language should be compatible with the exten-
sions proposed in this document for handling mul-
tidimensional aggregation. In particular, the inten-
tion is to have decidable satis�ability and logical
implication problems. We will briey mention how
the most general extension of a Description Logic
including built-in predicates with aggregation func-
tions makes the logic undecidable, even for very
weak base Description Logics. Thus, our e�orts
were concentrated in the direction of a language for
multidimensional aggregation without explicit ag-
gregation functions.

� the �nal language should be implementable with
the current technology. In particular, we refer
to the current academic implementations of ex-
pressive Description Logics, namely the system
FaCT [Horrocks, 1997]. It has been recently ar-
gued [Horrocks and Sattler, 1999] that the logic we
are considering here allows for the implementation
of sound and complete reasoning algorithms that
should behave quite well in realistic applications.

Next, we will sketch the relationships between the
ALCFI

+ Description Logic and Entity-Relationship,
Object-Oriented, and DLR data models. These rela-
tionships will demonstrate the adequacy of the proposed
language as a general language for the conceptual level
of an information system. In Section 3, we will extend
the basic language with the capability to handle multi-
dimensional aggregation.

Semantic and Object-Oriented Data Models

The most common semantic data model for database
design is the Entity-Relationship (ER) model
[Chen, 1976]. Figure 5 shows a simple schema
represented in an extended version of the basic ER
model, called EER, including ISA relationships.

[Calvanese et al., 1994] show how a schema expressed
in an EER conceptual data model can be expressed
in a suitable description logic theory { whose models
correspond with legal database states of the EER
schemas { allowing for reasoning services such as satis-
�ability of a schema or logical implication. Moreover, a
description logic allows for a greater expressivity than
the original EER framework, in terms of full disjunction
and negation, and entity de�nitions by means of both
necessary and su�cient conditions.
The proposals of [Calvanese et al., 1994]
and the more advanced one presented in
[De Giacomo and Lenzerini, 1999] use the ALUNI

and the DLR description logics respectively. Those
logics allow for the correct translation of the cardinality
restrictions of an EER schema, whereas ALCFI+ only
allows the translation of simple cardinality restrictions,
i.e., those involving only either `zero' or `one' as mini-
mum cardinality. We believe that in most real domains
these are the only relevant cardinality restrictions.
We will not describe in detail the transformation from
EER schemata to ALCFI+ knowledge bases. It is only
important to say that the relations are rei�ed in the de-
scription logic theory, i.e., they become concepts with n
special feature names denoting the n arguments of the n-
ary relation. For example, the relation INCOME becomes
a concept with the two features: incomer { relating to
the �rst argument of the relation, i.e., an employee {
and incoming { relating to the second argument of the
relation, i.e., a Euro quantity.
The translation of the EER schema of Figure 5 is pre-
sented in Figure 6. Please note that every role name
which appears in the formalization of an EER schema
is to be considered a functional role name in the trans-
lated description logic theory; in our example incomer,
incoming, locator, place, whole, and part are primi-
tive features.
[Calvanese et al., 1994] also presents the relationship
between a Description Logic and a generic Object-
Oriented formalism. The translation of the structural
part of an O-O schema into a description logic knowl-
edge base is similar to the one sketched for ER schemas;
we will not go into details here. We simply point
out that the ALCFI+ Description Logic is expressive



INCOME v incomer : Employee u incoming : Euro-quantity
LOCATION v locator : Employee u place : City
IS-PART v part : City u whole : Region
Employee v Person u 9incomer�1

. INCOME u 9locator�1
. LOCATION

Manager v Person

Euro-quantity v Quantity

City v 9part�1
. IS-PART

Figure 6: DL translation of the ER schema.

enough to capture that translation.

The Description Logic DLR

DLR is the DWCDM proposed by
[De Giacomo and Lenzerini, 1999]. There is no
competition between DLR and ALCFI

+. In fact, it
turns out that it is always possible to translate a DLR
knowledge base|including n-ary relations but without
cardinality constraints � 2, negation or conjunction
of relations|into an ALCFI

+ knowledge base. This
emerges from a careful reading of the encoding of
DLR knowledge bases into CIQ knowledge bases:
the only operators used in the translation which are
present in CIQ but not in ALCFI+ are the counting
existential quanti�ers 9�n with n � 2, and the negation
or conjunction of relations.
Please note the notational ambiguity of the \standard"
description logics feature selection operator \:" which is
used in ALCFI+, with the use of the same symbol in
DLR. In the DLR notation, the terminological axiom
resulting from the translation of the above ER schema

INCOME v (incomer : Employee)u
(incoming : Euro-quantity)

states that the binary relation INCOME is de�ned as hav-
ing an Employee as its �rst argument (the incomer)
and a Euro-quantity as its second argument (the
incoming). However, we have seen that this is encoded
in ALCFI+ using the very same terminological axiom,
where INCOME is now a concept and not a binary rela-
tion.

3 Structuring Aggregation

We introduce an extension of the basic description logic
which does not explicitly include aggregation functions,
but does make possible the description of the explicit
structure of aggregations. Thus, the conceptual lan-
guage will be able to abstract properties of aggregations,
their interrelationships, and, most notably, their compo-
nents: a Data Warehouse Conceptual Schema may con-
tain detailed descriptions of the structure of aggregates.
This result is obtained by making aggregations �rst
class citizens of the representation language: it is pos-
sible to describe properties of aggregations in the same
way that it is possible to describe properties of classes
of individuals; it is possible to describe the compo-
nents of an aggregations, and the relationships that

the properties of the components may have with the
properties of the aggregation itself; it is possible to
build aggregations out of other aggregations, i.e., it
is possible for an aggregation to be explicitly com-
posed by other aggregations. This approach closely
resembles the one pursued by [Catarci et al., 1995,
De Giacomo and Naggar, 1996], in the sense of propos-
ing a conceptual data model in which aggregations are
�rst-class entities intensionally described by means of
their components. As we have pointed out, the descrip-
tion of an aggregation is not going to include a speci�ca-
tion of how it is speci�cally built out of some particular
components; that is, an aggregation function is not ex-
plicitly determined.
The basic idea for this extension is to introduce
explicitly into the language a special binary rela-
tion, i.e., a role having particular properties, writ-
ten \�" (to be read \aggregates"), which re-
lates an aggregation with its components. This
is a radical departure from [Catarci et al., 1995,
De Giacomo and Naggar, 1996], where the relation
among aggregations and components is not explicitly
present in the language as a role.
The paper [Artale et al., 1996b] surveys several alterna-
tive approaches for representing the structure of aggre-
gates according to this idea, while [Artale et al., 1996a]
surveys the technical problems which are introduced in
a description logic with such a representation for aggre-
gates. In the following, section 3.1 will introduce the
basic framework for the conceptual modeling of mul-
tidimensional aggregations, together with an explana-
tory example. In section 3.2 a simple extension of
the description logic ALCFI+ { including an explicit
aggregates relation { is introduced, and the previous
example will be formalized using that language.

3.1 Multidimensional Aggregations

As stated in [Agrawal et al., 1995], a \good" data ware-
house system should support user-de�nable multiple hi-
erarchies along arbitrary dimensions. In section 1.1 we
have briey de�ned a dimension as an index for identi-
fying measures within a multidimensional data model.
A dimension is basically a domain, which may possi-
bly be structured in hierarchies of levels. For example,
in the context of a statistical study of the happiness
of employees (see Figure 7), possible dimensions are in-
come and location; chosen dimension levels may be Euro
quantity and city. A partitioning of a dimension de�nes
a particular level for that dimension. For instance, a
spatial dimension (like location above) might have a hi-
erarchy with levels such as country, region, city, o�ce.
A set of levels of di�erent dimensions (one level per di-
mension) de�nes a hypercube for a measure depending
on those dimensions. For example, \average age" can
be a measure depending on the levels income-category

(distinguishing between rich and poor) in the income
dimension, and region in the spatial dimension.
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Figure 8: A Conceptual Data Warehouse Schema for the information base of the left table of Figure 7.

In the conceptual data model, \dimension" is a syn-
onym for a domain of an attribute (or of attributes)
that is structured by a hierarchy and/or an order. In
order to support multiple hierarchies, the data model
must provide means for de�ning and structuring these
hierarchies, and for arbitrary aggregation along the hi-
erarchies.
A conceptual data model where both multidimen-
sional aggregations and multiple hierarchically organ-
ised dimensions can be abstracted and described could
provide support for query languages in multidimen-
sional data models. In fact, in the few attempts
where a cube algebra introduces the notion of multi-
ple dimensions and of levels within dimensions (e.g.,
[Cabibbo and Torlone, 1997]) the Data Warehouse Con-
ceptual Schema could serve as a reference meta-model

for deriving the inter-relations among levels and di-
mensions. [Hacid and Sattler, 1997] presents a proposal
for an extension of the cube algebra introduced in
[Agrawal et al., 1995], which makes explicit use of struc-
tured dimensions.
Let us now consider a concrete example of a conceptual
schema for the information displayed in the two tables

of Figure 7. Each cell in the bi-dimensional cube on the
left denotes the aggregation composed by all the employ-
ees having some income (in Euros) and working in some
location (a city). In particular, cell E1 is the aggrega-
tion composed of all those employees having an income
of approximately 30,000 Euros and working in Aachen.
It is clear that E1 may include more than one employee,
and it may itself have some properties which depend on
all of its components. For example, E1 may have the
property count which says how many employees|i.e.,
how many components of it|actually have an income
of 30,000 Euros and work in Aachen, and the property
average-age with the average age from all those em-
ployees. Of course, these properties may be computed
by some aggregation function from the properties of the
components.
An adequate basic conceptual schema for this simple
multidimensional information base should include enti-
ties such as Employee, City, and Euro-quantity and
relations such as income, and location. Moreover, the
schema should also include an additional aggregated en-

tity, say Ag-1, namely the class denoting the aggrega-
tions of employees by city as location and Euro quan-
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Figure 9: The extensions for the Conceptual Data Warehouse Schema of the information base of Figure 7.

tities as income; such an aggregated entity should also
have properties such as count and average-age. We
can also say that Ag-1 aggregates employees according
to the (basic) level Euro-quantity and the (basic) level
City of the dimensions income and location respec-
tively. It is clear that E1 is one of the aggregations
denoted by Ag-1.
Figure 8 represents the schema in a variant of the
Entity-Relationship data model. Please note that
the particular way of representing aggregated enti-
ties in the �gure is inspired by [Catarci et al., 1995,
De Giacomo and Naggar, 1996]. However, in the fol-
lowing sections we will show how our formalisation of
this representation di�ers fromand extends the origi-
nal one, being grounded on the special binary relation
aggregates. Moreover, it is clear from the schema that
in the conceptual description there is no speci�cation
on how aggregation functions possibly connect proper-
ties of components with properties of aggregates: it is
unknown whether the average age of the aggregation of
employees Ag-1 may be computed by means of an av-

erage function from the age of each employee which is
part of the aggregation.
If we also consider as part of the multidimensional infor-
mation base the aggregated view represented by the table
on the right of Figure 7{denoting the aggregation com-
posed by the employees having some income (aggregated
in simple categories such as rich and poor) and working
in some location (aggregated in northern and southern
regions)|more conceptual entities come into play.
Cell E2 is the aggregation composed by employees hav-
ing a high income and working in a northern region.
Analogously with E1, E2 may have the property count

which says how many employees actually have a high
income and work in a northern region, and the property
average-age which computes the average age from all
those employees.
Thus, we need to add both a new aggregated entity

and the de�nitions of the newly introduced levels for
the dimensions income and location. The new ag-
gregated entity, let's call it Ag-2, aggregates employees
according to the level Income-category and the level
Region of the dimensions income and location respec-
tively. It is clear that E2 is one of the aggregations
denoted by Ag-1. The level Income-category is ob-
tained by aggregating Euro quantities into the two ag-
gregations Ag-rich and Ag-poor according to the par-
titioning of the Euro-quantity entity into the two sub-
entities, Rich and Poor respectively. The level Region is
obtained by aggregating cities into the two aggregations
Ag-north and Ag-south according to the partitioning
of the City entity into the two sub-entities North and
South respectively. To sum up, we have identi�ed a new
aggregated entity Ag-2 and the new dimensional enti-
ties Income-category, Rich, Poor, Ag-rich, Ag-poor,
Region, North, South, Ag-north, and Ag-south.
Figure 9 represents the extensions required to the origi-
nal schema (for reasons of space, some dimensions have
been left out).

3.2 The Language for Structured Aggrega-
tions

In this section a simple extension of the Description
Logic ALCFI+ is introduced. The language is aug-
mented with an explicit \aggregates" binary relation|
i.e., a role|with its inverse \is-aggregated", and with
a special class denoting atomic aggregates|i.e. aggre-
gations having no components. The syntax of the De-
scription Logic is extended with the following rules:

C;D ! f (atomic aggregate)

R;S ! � j (aggregation role)
� (decomposition role)

The semantics of the new operators is de�ned as follows:
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f
I = fi 2 �I j 8j. (i; j) 62 �I

g

�I = f(i; j) 2 �I ��I j (j; i) 2 �Ig

where it is worth noting that the aggregates role �must
be interpreted as a transitive relation. In fact, if we con-
sider as an example the aggregated entity Car, described
by having wheels as components which in turn have tires
as components:

Car
:
= 9�. (Wheel u 9�. Tire);

then the fact that tires are also parts of cars is logically
implied by the above terminological axiom, i.e.,

Car v 9�.Tire:

is a consequence of the de�nition of car. This deduction
is valid only if the aggregates relation is transitive.
In order to understand the full potential of the formal-
ism, we will reconsider the example given for an EER
data model in the previous section. We start to for-
malise the basic part of the schema of Figure 8, i.e.,
the pure EER part, in a similar way to the formalisa-
tion presented in Section 2.1. Please recall that every
role name which appears in the translation of an EER
schema in a Description Logic knowledge base|with the
exception of the aggregation roles|is to be considered
a functional role name.

INCOME v incomer : Employeeu
incoming : Euro-quantity

LOCATION v locator : Employeeu place : City

The aggregated entity Ag-1 is de�ned as being an aggre-
gation composed by those employees having an income
in Euros and a location in a city:

AVERAGE-AGE v theme : Ag-1 u age : Age
Ag-1 v :f u 8�. Employee u

8(� � incomer�1jINCOME � incoming). Euro-quantity u
8(� � locator�1jLOCATION � place). City

Figure 10 may help the reader to better understand
the complex role paths appearing in the de�nitions
of aggregations. Ag-1 is the class denoting all the
possible aggregations composed by employees which

are incomers of some INCOME in Euro-quantity.
In a similar way it is possible to reconstruct the
path through the LOCATION dimension. According to
[De Giacomo and Naggar, 1996], Ag-1 is a simple aggre-

gate declaration.
We now introduce the aggregations de�ning the new
level in the income dimension (compare with Figure 9).

Rich
:
= Euro-quantityu :Poor

Euro-quantity
:
= Rich t Poor

Ag-rich
:
= :f u 8�. Rich

Ag-poor
:
= :f u 8�. Poor

Income-category
:
= Ag-rich t Ag-poor

In an analogous way it is possible to de�ne the new level
for the location dimension. The aggregated entity Ag-2

is de�ned as being an aggregation composed of those
employees having an income category and a location in
a region:

Ag-2 v :f u 8�. Employee u

(8(� � incomer�1 jINCOME �incoming jEuro�quantity ��). Ag-rich t

8(� � incomer�1 jINCOME �incoming jEuro�quantity ��). Ag-poor ) u
(8(� � locator�1 jLOCATION �place jCity ��). Ag-north t

8(� � locator�1 jLOCATION �place jCity ��). Ag-south )

Recall that Ag-2 is the class of all aggregations such
that each one of them aggregates employees having the
same income (at the level of income category) and the
same location (at the level of region). This is opposed to
Ag-1 aggregating employees having the same income (at
the level of Euros) and the same location (at the level
of city). According to [De Giacomo and Naggar, 1996],
Ag-2 is a complex aggregate declaration.
Each aggregation of employees belonging to the class
denoted by Ag-2 includes either only rich employees
(incomers of some income which is a Euro quantity in
the rich aggregation of Euro quantities) or only poor
employees (incomers of some income which is a Euro
quantity in the poor aggregation of Euro quantities).
In a similar way, each aggregation of Ag-2 includes ei-
ther only northern employees, or only southern employ-
ees. Thus, aggregations denoted by Ag-2may be of four
possible types: northern rich employees, northern poor
employees, southern rich employees, or southern poor
employees.
In order to enforce the abovementioned cardinalities on



the extension of the introduced aggregations, we should
add the following constraints (which are, however, not
supported by the current Description Logic):

j Ag-1 j=j City j � j Euro-quantity j
j Ag-north j=j Ag-south j=j Ag-rich j=j Ag-poor j= 1

j Ag-2 j= (j Ag-rich j + j Ag-poor j)�
(j Ag-north j + j Ag-south j) = 4

Note that simple aggregate declarations always introduce
a unique aggregation: thus, simple aggregates do have
a cardinality equal to one. Complex aggregate declara-

tions introduce aggregations in a number equal to the
product of the cardinalities of the chosen level for each
dimension.

It is worth noting that the complex roles

(� � incomer�1 jINCOME �incoming jEuro�quantity ��)
(� � locator�1 jLOCATION �place jCity ��)

represent the precise and complete internal struc-
ture of the interrelationship between the target of an
aggregation|in this case Employee which is related to
the aggregation via the aggregates relation|and the
dimensions de�ning the way the aggregation is built|in
this case the income and location dimensions.
In [Catarci et al., 1995, De Giacomo and Naggar, 1996],
the de�nition of those interrelationships were left un-
speci�ed, and there was an asymmetry in the semantic
treatment of simple aggregate declarations (like
Income-category in our example) { using the member-

ship relation to denote the components { and complex

aggregate declarations (like Ag-1 and Ag-2) { using the
target relation to denote the components.

3.3 Aggregation Functions

In order to correctly model the notion of an aggregate,
we can not restrict ourselves to describing itsmeronymic

structure { i.e., the existence of an aggregation rela-
tion between the aggregated entity and its components
{ rather we must be able to express how the aggregate
is related to its components, and how the components
are \glued together" to form an aggregate.
An important result of the research within the DWQ
project identi�es the borders for the possible exten-
sions of a Data Warehouse Conceptual Data Model to-
wards the explicit inclusion of aggregation functions
[Baader and Sattler, 1998]. It has turned out that
the explicit presence of arbitrary aggregation functions,
when viewed as a means to de�ne new attribute values
for aggregated entities, and built-in predicates in a con-
crete domain increases the expressive power of the basic
conceptual model in such a way that all interesting in-
ference problems may easily become undecidable. More-
over, this result is very tightly bounded: extending FL0,
a very weak Description Logic allowing only conjunc-
tion and universal value restrictions (which is included
in ALCFI+) with a weak form of aggregation, already

Employees by income
and region

age

age

age
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Employee

aggregates

AVERAGE

Figure 11: The average age of employees aggregated by
income and region.

leads to the undecidability of satis�ability and subsump-
tion. On the other hand, recent research has shown that
appropriate restrictions of the allowed aggregation func-
tions yield decidability of these problems. These results
concern (1) the use of aggregation functions in nested
concepts and (2) concrete domains like the integers, the
non-negative integers, the rationals, and the reals.
Given the restrictions posed by these negative results,
we follow in this paper a mere structural approach. In
order to represent a weak kind of dependency between
components and aggregates we make use of the so-called
structural descriptions in Description Logic. The syntax
of the Description Logic is extended with the following
rule:

C;D ! 
 R1 R2. S (role constraint)

The extensional semantics of the new operator is the
following:

(
 R1 R2. S)
I = fi 2 �I

j 8j; k. (i; j) 2 RI

1 ^(i; k) 2 RI

2

) (j; k) 2 SIg

Structural descriptionsmay serve to emulate a simpli�ed
version of aggregate functions. Consider the example of
the aggregated entity Ag-2 (introduced in Section 3.2)
denoting aggregations of employees by income category
(poor and rich) and region (north and south). The func-
tional attribute average-age of such an aggregated en-
tity may be represented as the AVERAGE of the values of
the functional attribute age of the employees composing
the aggregate itself:

Ag-2 v 
 average-age (� jEmployee � age). AVERAGE

This de�nition states that for each aggregate in Ag-2

there is a relation of type AVERAGE between the value
of its attribute average-age and all the values of
the attribute age for each employee composing the
aggregate|see Figure 11.



4 Conclusions

We have introduced a Data Warehouse Conceptual Data

Model, extending the most interesting traditional Se-
mantic Data Models and Object-Oriented Data Models,
which allows the representation of a multidimensional
conceptual view of data. We have seen how the pro-
posed conceptual data model is able to introduce com-
plex descriptions of the structure of aggregated entities
and multiply hierarchically organised dimensions. In
order to support multiple hierarchies, the data model
provides means for de�ning and structuring these hi-
erarchies, and for arbitrary aggregation along the hier-
archies. The proposed framework does not yet include
an explicit treatment of the temporal and spatial di-
mensions. Our future work will be devoted to a further
development of the data model in order to explicitly con-
sider temporal and spatial dimensions, and a study of
the expressivity in relation with decidability and com-
plexity of the re�nement reasoning task.
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